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Two models with nonconserving dynamics and slow continuous deterministic driving, a stick-slip
model (SSM) of earthquake dynamics and a toy forest-fire model (FFM), have recently been argued to
show numerical evidence of self-organized criticality (generic, scale-invariant steady states). To deter-
mine whether the observed criticality is indeed generic, we study these models as a function of a parame-
ter ¥y which was implicitly tuned to a special value, ¥ =1, in their original definitions. In both cases, the
maximum Lyapunov exponent vanishes at Y =1. We find that the FFM does not exhibit self-organized
criticality for any y, including ¥ =1; nor does the SSM with periodic boundary conditions. Both models
show evidence of macroscopic periodic oscillations in time for some range of ¥ values. We suggest that
such oscillations may provide a mechanism for the generation of scale-invariant structure in nonconserv-
ing systems, and, in particular, that they underlie the criticality previously observed in the SSM with

open boundary conditions.

PACS number(s): 05.20.—y, 05.45.+b, 05.70.Jk, 64.60. —i

I. INTRODUCTION

It has recently been discovered that certain nonequi-
librium model systems with local interactions evolve to a
scale-invariant or ‘“‘critical” steady state characterized by
algebraic decays of correlations and a power-law distribu-
tion of the sizes of relaxation events [1]. In contrast to
the situation in equilibrium systems, the critical state is
achieved for generic values of the parameter of the sys-
tem; no fine tuning is necessary. This phenomenon,
termed self-organized criticality (SOC), has been conjec-
tured to occur commonly in spatially extended, dissipa-
tive systems that are driven slowly relative to the
system’s relaxation rate [2]. It has been suggested [1]
that SOC is responsible for the common occurrence of
scale invariance in nature.

The term SOC applies to systems that are driven either
completely deterministically at a very low rate, or by
“slow noise” —random local perturbations, each of
which is applied only after the system has relaxed fully in
response to any prior perturbation. It is not at all clear
that traditional analytical methods developed for equilib-
rium or noisy nonequilibrium problems can be applied to
such systems. Nevertheless, the slow noise or determinis-
tic chaotic fluctuations in the critical state might approx-
imate white noise at some level, so analytical results for
noisy systems may at least be taken as a useful guide in
the study of SOC.

A fundamental result for driven nonequilibrium sys-
tems subject to external white noise is that scale invari-
ance can indeed occur generically, but only in systems
with either a conservation law or a special continuous sym-
metry, such as the translation invariance which allows
even equilibrium interfaces to exhibit rough, scale-
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invariant phases [3]. The only exactly solved class of
slow noise models—the ‘“Abelian sandpile models”
[4]—Dbehave in a qualitatively similar manner: Dhar has
demonstrated that these models exhibit critical correla-
tions when the relaxational dynamics is conserving [4].
Moreover, straightforward application of the results of
Ref. [4] shows that in the absence of conservation the
Abelian models have exponentially decaying correlations
under generic conditions. In light of these results, the
well-established [1,5] occurrence of SOC in slowly driven,
non-Abelian conserving model systems seem quite natu-
ral; but the recent discovery of deterministic (non-
Abelian) models displaying SOC without a conserved
quantity [6—8] is somewhat surprising and very intrigu-
ing, since it suggests a different mechanism for the gener-
ic generation of scale-invariant structure.

In this paper we focus on the problem of SOC in sys-
tems without a local conservation law. We study two
(non-Abelian [9]) deterministic nonconserving models
that have shown strong numerical evidence of SOC: a
“forest-fire”” model (FFM) that has been argued to pro-
duce structure reminiscent of turbulence [6], and a stick-
slip model (SSM) of earthquake dynamics [8]. These two
models (together with a model of friction [7] that is quite
close to the SSM), are, to our knowledge, the only non-
conserving systems in which plausible evidence for SOC
has been found. Though they differ considerably in de-
tail, the models share some basic features: In both cases,
a real variable u; is defined on the sites of a square lattice
and all u; are increased slowly and uniformly until one of
them reaches a threshold value U. Upon reaching
threshold, u; “topples,” decreasing by some amount, and
“kicks” its near neighbors u;, increasing each u; by an
amount that depends on u; and/or u iz This increase may
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cause a neighbor to exceed U in which case it topples too,
and a chain reaction or “avalanche” may ensue. (Explicit
statements of the toppling and kicking rules are given in
subsequent sections.) In both cases, the threshold dy-
namics imply that individual sites act as driven oscilla-
tors, ramping up to threshold (or possibly being kicked
over), then dropping well below threshold, and ramping
up again. Roughly speaking, the large avalanches which
are characteristic of SOC occur when connected clusters
of sites are in phase, so that when one reaches threshold
the others are near enough to be kicked over threshold.

Our aim here is to determine whether SOC can be gen-
eric in such models and, if so, under what conditions. To
that end, we introduce a parameter ¥ into the FFM and
SSM and study its effects on their stable states [10]. In
both models we find that y=1 is a special point that
separates two regimes of qualitatively different behavior.
Interestingly, ¥ =1 is the value studied in the original
SSM and one of the two values studied in the FFM.

Exploring the phenomenology of the systems for
different values of y, we identify regimes of strictly
periodic states, wherein the value of every variable recurs
after one period. We also find states wherein the indivi-
dual variables fluctuate chaotically while the mean, or
spatially averaged, variable appears to oscillate periodi-
cally or even chaotically in time. We call such states,
which can be thought of as breaking a continuous time-
translation symmetry, “periodic or chaotic in the mean,”
respectively, and suggest that they might provide a
different mechanism for generating scale-invariant
behavior under generic conditions.

A more detailed summary of our main results follows.
Though previous studies of the FFM and SSM have, re-
spectively, used periodic and open boundary conditions,
here we consider periodic boundary conditions in both
cases. The effects of more physical boundary conditions
in the SSM may be important, but are best addressed
after a proper understanding of the periodic boundary
condition case is achieved. We comment on the effects of
open boundaries in the SSM only in Sec. VI.

For the FFM, we find that SOC does not occur for any
values of ¥, including those for which it was previously
claimed (y=1,2). The periodic states for y =1 in the
FFM, which have only system-wide avalanches, are com-
pletely characterized. The maximum Lyapunov ex-
ponent is negative (zero) for y <1 (y=1). Complex
behavior—possibly states periodic in the mean—is ob-
served for a small range of ¥ > 1, but the avalanche-size
distribution spectrum does not appear to be critical.
Above this range we observe manifestly noncritical be-
havior, though at y =2 the correlation length is quite
long (£~ 50).

For the SSM with periodic boundary conditions, we
also show that SOC does not occur for any y. For y <1
we find only strictly periodic states with negative max-
imum Lyapunov exponents, the avalanche spectrum be-
ing dominated by small events. For y > 1 the most com-
monly occurring states are also strictly periodic, with
negative maximum Lyapunov exponents, but they exhibit
avalanches comparable to the system size. We have also
observed some states that appear not to be strictly
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periodic. The avalanche spectra in these rare states are
almost identical to those of the periodic states for ¥ > 1 in
that only a few different avalanche sizes occur. We also
demonstrate that y =1 is a unique point at which the
maximum Lyapunov exponent of each stable state van-
ishes; all the states are strictly periodic and exactly one
site topples in each avalanche.

In Secs. II and III we discuss some general issues
relevant to the interpretation of numerical results and the
identification of SOC. In Secs. IV and V we present re-
sults for the FFM and SSM, respectively, and in Sec. VI
we speculate about the effects of open boundary condi-
tions and possible mechanisms for the generation of scale
invariance in generic nonconserving systems.

II. PERIODIC STATES AND SOC

Since the time evolution of the individual variables in
the models studied here is basically periodic, it i1s not
surprising that periodic states occur frequently. We have
already pointed out that these states are of two different
types: strictly periodic states (hereafter referred to sim-
ply as periodic), and states “periodic in the mean,” with
local chaotic fluctuations, but wherein the spatial average
executes periodic oscillations for large L. Both types of
states are familiar from other extended nonequilibrium
systems [11] such as coupled map lattices [12]. The ab-
sence of fluctuations makes the former group less in-
teresting conceptually, though in practice (see Sec. V)
periods can become extremely long and the spatial struc-
ture extremely complex. In principle these states might
even have avalanche-size distribution functions with
power-law tails. One might call such behavior SOC, but
this is quite different from the original conception of the
term, which refers to states with nontrivial fluctuations.

The second group of periodic states do have such fluc-
tuations. They can be thought of as breaking a continu-
ous symmetry—time-translation invariance—and so
might be expected to exhibit, in analogy with the break-
ing of a continuous symmetry in noisy systems, power-
law decays of correlations associated with the resulting
Goldstone mode [13-15]. Since such symmetry breaking
can occur generically, this represents another potential
mechanism for producing power laws in slowly driven
systems without fine tuning, though, again, a different
one than in the original notion of SOC, which makes no
reference to symmetry breaking or temporal periodicity.
One should also be alert to the possibility, especially in
two-dimensions (2D), of ‘“quasiordered” nearly periodic
states which, in analogy to the Kosterlitz-Thouless
phases familiar from equilibrium 2D XY models [16], do
not break time-translation symmetry but exhibit power-
law decays of correlations as a consequence of almost do-
ing so.

To find SOC as originally envisaged, i.e., generic,
scale-invariant states without symmetry breaking, one
must clearly look in the chaotic regime, chaos being the
only available source of fluctuations. (It is possible that
such critical states occur with only ‘“weak chaos”—a
maximum Lyapunov exponent A of zero and power-law
spreading of trajectories—but A=0 occurs only at the
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special point ¥y =1 in the models studied here, and not
generically [17].) As discussed in Secs. IV and V, howev-
er, we find no evidence of such “conventional” SOC be-
havior for the models under study when periodic bound-
ary conditions are applied. The SSM with open boundary
conditions is briefly discussed in Sec. VI.

III. IDENTIFYING SOC

A. Avalanche-size distribution P (s)

The most familiar diagnostic for determining whether
or not slowly driven systems exhibit SOC is the distribu-
tion of avalanche sizes P(s) [1]. Power-law decay of this
quantity, i.e., P(s)~s " ? out to a finite-size cutoff s*(L),
which grows algebraically with L, s*(L)~L", [18], is the
typical signature of SOC. Owing to computational limits
it can of course be difficult to distinguish true algebraic

. . B —S/s
decays from exponential behavior, e.g., s Pe ° when
the characteristic avalanche size s, is large.

As we shall see, the stable states in the FFM and SSM
have a variety of different avalanche-size spectra, ranging
from only single-site avalanches or only avalanches of
size L2, to complicated spectra corresponding to many
distinct avalanche sizes.

B. “Susceptibility” ¥ and maximum Lyapunov exponent A

In addition to P(s), several other measures of collec-
tive behavior are useful in understanding the properties
of the models. The most direct is an analog of the order-
parameter susceptibility in equilibrium systems: the sum
over all sites of the equal-time correlation function

x=>G.(i,j)/N , (1)
ij
where
G (i, j)=Cuu; ) —Cu ) uy) )

Here N =L? is the number of sites of the system in d di-
mensions and { ) denotes an average over time. For the
time averaging, we consider the variables to increase at a
fixed rate during continuous driving and average over the
continuous-time variable. The avalanches are considered
instantaneous on this time scale, so configurations that
occur during an avalanche do not enter the average.

The quantity Y is a familiar measure of criticality in
equilibrium, typically diverging with N at a continuous
phase transition. It is, however, a useful diagnostic only
when the system tends to order in a spatially uniform
manner, i.e., at wave vector q=0. If the ordering occurs
at nonzero q, as in antiferromagnets, then ) typically
remains finite, and one needs to study the appropriate
finite-g susceptibility to hope to see a divergence with N.
Even with ordering at q=0, Y is useful only if G, decays
sufficiently slowly with r», the separation between site i
and j, at the putative critical point: If G, ~r ~ " at large #,
then y diverges (like L?™") only if n<d. In the complex
nonequilibrium systems considered here it is not at all
clear a priori whether algebraic correlations tend to de-
velop only at q=0, that if so they decay slowly enough
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for y to diverge, or even that the correlations tend to be
homogeneous rather than varying randomly in space, as
in a spin glass [19]. Correlations in the FFM and SSM,
however, behave “ferromagnetically,” with G, >0 for all
r and all parameter values we checked. Moreover, for pa-
rameters where ) saturates with increasing L, data for G,
show no evidence of a decay with a large power of r.
Thus the divergence of y with L is a reliable indicator of
the presence of critical behavior or ordering in these
models and the saturation of x with increasing L indi-
cates noncritical behavior.

Writing x in the form y =N ({M?) — (M )?), where M
is the spatial average 3 ;u;/N, makes it clear that in ei-
ther kind of periodic state (or in states where M fluctu-
ates chaotically in time in the large-N limit), ¥ diverges
linearly with N. This provides a useful tool for distin-
guishing such states from ones in which M is constant in
time for large N, the divergence of y in the latter being
sublinear in N.

Further insight about the state and fluctuations of the
system is provided by the maximum Lyapunov exponent
A, whose positivity is taken here as the definition of
chaos, and whose vanishing signals the onset of chaotic
behavior.

IV. FOREST-FIRE MODELS
A. Definition

The forest-fire or “‘epidemic” model studied here is a
generalization of the deterministic model with periodic
boundary and random initial conditions introduced in
Ref. [6]. The variable u;(7) assumes values between O
and 4, and represents the height of a tree on site i of a
square L XL lattice at (discrete) time 7. For u,(7)2=2,
1=u;(7)<2, or 0=u; <1, the tree is said to be on fire,
living, or ash, respectively. Trees evolve under simul-
taneous updating according to the following rules.

(i) Any tree not on fire grows by a small amount p at
each time step: u;(7+1)=u;(7)+p, unless (ii) it is living
and has at least one nearest neighbor on fire, in which
case it “catches  fire” (is “kicked”), i.e.,
u,(r+1)=y[u;(r)—1]+2. (i) A tree on fire burns
(“topples™) in one time step: u;(7+1)=u;(7)—2.

Rule (ii) makes clear that ¥ controls the rate at which
nearby trajectories converge (y <1) or diverge (y>1).
The original model was discussed only for y=1, the
boundary between these two regimes, and y =2, and for
p >0, criticality at p =0 being inferred from numerical
results obtained for p’s down to about 0.001. Following
Ref. [7] we study the model directly in the p =0 limit,
where the driving or growth is infinitely slow relative to
the spread and burning of fires. In this limit, fires propa-
gate according to rules (ii) and (iii), until no fire remains
on the lattice. At the next time step, which represents
the infinitely slow growth of the entire forest, the largest
variable u; is identified, and all variables are increased by
2—uy, i.e., by the amount required for u; to catch fire
spontaneously. The spread of this fire then occurs
through rules (ii) and (iii), and so on. Unlike for finite p,
where some fraction of sites is on fire at any given time,
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the p =0 limit has discrete fires (“avalanches”) of finite
size and duration.

B. Previous results for p >0

Most of the reported results [6] for the continuous-
variable FFM at nonzero p have been obtained for 2D
and y =2, though similar behavior is reported [6,20] for
¥ =1. Snapshots of the lattice typically consist of rather
straight, linear fire fronts, separated by a distance of
O(1/p), sweeping across the lattice with unit speed, con-
suming living trees, and leaving ash in their wake. The
lengths of these fronts seem also to grow like §=~1/p for
p’s down to roughly 0.001. Since the fronts are nearly
straight, the fractal dimension of the fires out to distances
of O(&) is found to be very nearly unity; at larger dis-
tances it crosses over to the expected value of 2. The
presumption has been that & diverges in the p =0 limit,
thereby demonstrating the occurrence of SOC. Since the
trees grow at rate p, the fundamental cycle time of the
system scales like 1/p. Steady state is achieved only after
many cycles, so as p decreases, one must not only look at
larger and larger systems to see that £ is continuing to in-
crease, but wait longer and longer. These considerations
have hitherto restricted study to p > 0.001.

C. Absence of SOC at p =0

We now argue that for neither y =1 nor ¥ =2 is the
FFM truly critical in the p =0 limit. At sufficiently small
D, & in fact saturates at some finite value. Indeed, over
the whole range of y’s we studied, O <y =2, the only hint
of potential criticality occurs for y just above 1,
1<y < 1.2, say, where quasiordered periodic states are a
possibility. A summary of our numerical results in the
various ranges of y values follows. Here a cycle is
defined as the phase-space trajectory of the system be-
tween topplings of a designated site, and A is measured by
the decay of 3;|u;(n)—v,(n)|, where n counts the cycles
and v,(0)=u;(0)+¢; with small random €;. The period T
of a periodic state is given in units of cycles. (For the
periodic boundary conditions considered here, T is in-
dependent of the choice of the designated site and is, on
average, linearly related to the continuous time variable.)

0<y <1: For y <1 only periodic states occur, con-
sistent with expectations based on the convergence of
nearly trajectories. In these states, u; > 1 for all i at the
beginning of each avalanche. Thus every tree burns to
ash, u; <1, in each avalanche, so each avalanche consti-
tutes one cycle and has size L2 Hence y~L? and
P(s)=8s,L2. The period T'=L?2, since each of the L? sites
precipitates exactly one avalanche before a given
configuration of values recurs. For each L, the set of
values of u; immediately after an avalanche is invariant.
Given that at some time all sites fall in the same
avalanche, it can be shown that the system will converge
to a state in which {u;}={(y—y")/(1—yL");
n=1,...,L*}. Given that every site topples in every
avalanche, however, it is clear that arbitrary permutation
of the u; values produces an essentially equivalent period-
ic state; different initial conditions lead to different per-

2369

mutations. These states have A <0. (See Fig. 1).

y=1: For y=1 the same kind of states occur, the
only difference being that the values of the u; attained in
a period are no longer unique: small changes in initial
conditions produce small changes in these values, imply-
ing A=0. Other, more complex, periodic states with
avalanches smaller than L? and a less trivial avalanche
distribution function also occur for ¥y =1. These states
also have A=0.

I<y<y*=12: For p’s slightly larger than 1, the
model is no longer perfectly periodic, but shows the ex-
pected chaotic fluctuations associated with trajectory
spreading: A>0. (See Fig. 1.) As can be seen in Fig. 2,
for a given ¥ between 1 and 1.2 there are two distinct re-
gimes of rapid growth of y. These correspond to two
different types of states, each with macroscopic oscilla-
tions of the average variable M (¢). (See Fig. 3.) In nei-
ther of these states does the avalanche distribution show
any obvious sign of scale invariance. For smaller L’s,
P(s) is rather flat out to sizes s of O(L?), where it has
two pronounced peaks reminiscent both of the SS’ L2

spikes seen for ¥ <1 and the ‘“‘great events’ peaks ob-
served in various other simple earthquake and sandpile
models [21]. [See Fig. 4(a).] For larger systems, the two
peaks disappear and P (s) appears to decay exponentially
beyond some relatively large size. [See Fig. 4(b).] The
crossover in L from the peaked distribution to the ex-
ponential one coincides with the flat feature in y(L) in
Fig. 2. It remains unclear whether oscillations in the
mean (and the concomitant growth of y like L?) persist
for larger L, or whether, as for ¥ > y* (discussed below),
the state is actually time-translation symmetric with a
rather long correlation length. To understand the
significance and value of y*, one must consider how
states with appropriate distributions of u;’s evolve for
two cycles. One finds that distributions with O <u; <b
for all i, with b=(7/3—1)(y—1), can satisfy the same
condition after two cycles and thereby produce stable os-
cillations, provided that b<1—1/y. The states
represented in Fig. 3 are closely approximated by such a
description. The maximum value of ¥ for which this type
of state can be stable therefore satisfies y*—y =1, yield-
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FIG. 1. Trajectory convergence (divergence) for the FFM
with ¥ =0.95 (1.05) and L =32. The random perturbation is ap-
plied at n =0, after a transient of 10 (1000) cycles.
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FIG. 2. Susceptibilities for the FFM with y = 1. All runs
with L <128 included 10* cycles after a transient of 10* cycles.
Runs with L =192 included 10’ cycles after a transient of 103
cycles and hence are less reliable. Error bars are rough esti-
mates based on only a few runs with different initial conditions;
when not explicitly shown they are approximately equal to the
size of the symbols. Note the difference between ¥y =1.2 and 1.3
at the larger values of L. Note also the drastic difference be-
tween ¥ =1.05 and 1.00. The crossover between the two or-
dered states (see text) is most apparent at y =1.1.
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FIG. 3. Mean variable value M (¢) as a function of time ¢ for
the FFM with ¥y =1.1 and periodic boundary conditions, illus-
trating the two different states periodic in the mean: (a) L =16;
(b) L=064.
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ing y*=1.22. This accounts for the change in behavior
above y = 1.2 visible in Fig. 2.

v >v*: For these large y values, the chaotic fluctua-
tions are too violent to allow periodic behavior: For L’s
larger than roughly 50 the amplitude of the oscillations in
M (t) decreases with L, as illustrated in Fig. 5. The re-
sulting steady state is not scale invariant: the susceptibil-
ity saturates with L (Fig. 2), though, again, only at fairly
large sizes (L =~50 for y=2), and P(s), shown for
y=1.99 in Fig. 6, is consistent with exponential decay
with a characteristic avalanche size s,~ 350, independent
of L. We believe that the relatively long correlation
lengths reflected in the large values of L required for sat-
uration are responsible for the attribution of SOC to the
earlier data collected at finite p. We have taken suscepti-
bility data at small positive p which show the susceptibili-
ty achieving a maximum at p =0.003 (Fig. 7), and then
decreasing with decreasing p, consistent with our results
at p =0. We also note that care must be taken at y =2 to
avoid drastic artifacts of binary computation. This is the
reason we quote results for y =1.99 rather than exactly 2.

V. STICK-SLIP MODELS

Definition

Again a real variable u; is defined on each site of an
L X L lattice with periodic boundary conditions and ran-
dom initial conditions. The u;’s are increased at a uni-

10° T i T T
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100
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W0 L =0 64
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FIG. 4. Avalanche size distributions for the FFM with
y=1.1 in the two types of states that are periodic in the mean:
(a) L=16 and 32 (approximately 10* avalanches each); (b)
L =64 and 128 (approximately 10° avalanches each). For clari-
ty, the points shown are averages over a bin, where the horizon-
tal logarithmic scale is partitioned into 500 equal width bins.
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FIG. 5. Mean variable value M(¢) as a function of time ¢ for
the FFM with y=1.99 and periodic boundary conditions: (a)
L =32; (b) L=64. Note the clear decrease in the strength of
the oscillations with increasing L.
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FIG. 6. Avalanche size distributions for the FFM with
y=1.99 and L=32, 64, and 128 (approximately 3X10°
avalanches each). (a) log-log plot; (b) log-linear plot. Note the
exponential decay for large L.
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FIG. 7. Susceptibility as a function of driving rate for the
FFM with ¥ =1.99. Values shown are the saturation values of
x at large L. The point at p =0.003 is somewhat uncertain, as
indicated. At this p, clear saturation did not occur for L’s up to
128, and extrapolation of data from smaller L’s was necessary.

form rate until one of them reaches a specified threshold
U and initiates an avalanche, which consists of a se-
quence of synchronous updates of the lattice. At each
step, any unstable site u; > U topples: u; —0. Simultane-
ously, any u; <U that is the nearest neighbor of one or
more unstable sites is kicked: u;—yu;+a3;u;, where a
and y are real parameters and the sum runs over the un-
stable nearest neighbors of u;. The avalanche stops when
all sites are stable, and the continuous driving resumes.

When y =1, this model is, apart from boundary condi-
tions, the one studied in Ref. [8]. There u; represents the
total elastic force on a block in a block-spring model of a
fault. Each block rests on a frictional surface and is con-
nected by springs to its nearest neighbors and to a rigid
plate that is assumed to move at a very slow constant ve-
locity. The toppling and kicking rules approximate the
redistribution of stress occurring when the force on a
block, which increases as the rigid plate moves, over-
comes static friction. In Ref. [8], the distribution of
avalanche sizes P(s) is numerically computed for
0.05 <a <0.25, where s is defined to be the number of
topplings in an avalanche. The fact that P(s) decays
algebraically is interpreted as evidence for SOC. The
data indicate that the exponent governing the decay
varies with a, with P(s)~s " !°! at @=0.2. It is also ar-
gued that @=0.2 is a physically relevant value.

We note that the driving, toppling, and kicking rules
used in Ref. [8] were derived under the assumption that
all of the springs in the system are perfectly linear. A
striking consequence of this assumption is that the sizes
of the kicks and the rate of increase between the kicks do
not depend in any way on the position of a block relative
to its neighbors and the rigid plate. Nonlinearities in the
springs, no matter how small, would alter this situation
and therefore must be considered. To incorporate the
effects of nonlinearities in detail would complicate the
model considerably. Instead, by allowing y#1, we intro-
duce in the simplest way terms in the dynamics that al-
low the change in u; to depend on the value of u; at a site
that is kicked even when the kick does not put the site
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over threshold. The point is that, among other effects,
the nonlinear terms in the elasticity remove a certain de-
generacy in the system, so a system possessing that de-
generacy cannot be considered generic. Setting y#1 is
the simplest way of removing the degeneracy and hence
of avoiding artifacts associated with it, though it does not
model the elastic nonlinearities in detail. The observed
qualitative changes in the behavior for different y’s sug-
gest that the linear model is not, in fact, representative of
a generic physical system.

We have simulated the SSM for a=0.2 and a range of
Y. We characterize the steady states by their avalanche
statistics and Lyapunov exponents, computed as in the
FFM. When periodic boundary conditions are applied,
there are four regimes of qualitatively different behavior.

(i) y =1—a: Only s=1 avalanches are possible since
yu+aU < U for any u < U. After a short transient (~ 10
cycles), a periodic state with T=1 is reached. Though
A(y;L) varies slightly from run to run, it is always nega-
tive and decreases in magnitude for increasing L. For ex-
ample, averaging over four runs for each case, we find
A(0.799;8)~—1.3X 10"}, 1(0.799;16)~ —3X 10" %, and
A(0.799;32)~ —7X107°.

(ii) 1—a<y <1: Here too the system always settles
into a periodic state with A <0. As above, |A| decreases
as L increases, though A varies slightly from run to run.
There is also a clear decrease in |A| as y is increased to-
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FIG. 8. Avalanche size distributions for the SSM with
periodic boundary conditions and a=0.2. Data are averaged
over 500 periodic states obtained from different random initial
conditions. Each individual run gives only a few distinct s
values. (a) ¥ =0.90 and 0.95; note that 90% of the events have
s=1. (b) y > 1.03; note the frequent occurrence of s =L>.
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ward 1; A(0.9;16) =~—2X10"? and %(0.99;16)
~—2X1073. In this regime, avalanches with s > 1 can
and do occur, with an increasing proportion of large ones
as y increases. Figure 8(a) shows distributions for y =0.9
and 0.95 averaged over 500 periodic states. Periods 7> 1
also occur more frequently as y increases, though 7'=1
remains the most probable for all ’s we have examined,
which include values up to 0.99. As y approaches 1, the
transients leading to the periodic states become extremely
long.

(iii) ¥ > 1: 1In this case, one finds states for which P(s)
is nonzero only at a few different values of s, some of
which are close to L2. Most of these states are periodic
with small period, but in some the sequence in which
different size avalanches occur appears chaotic. By far
the most common states are periodic with a cycle consist-
ing of a single avalanche of size L2 [See Fig. 8(b).]
Periodic states with 7'> 1 are also possible: we have ob-
served periods of up to 62 cycles (always with A <0).
Note that if ¥ is made sufficiently large, the toppling and
kicking rules result in a net increase of u and an
avalanche of infinite duration is produced. All our simu-
lations are done below this regime, which would be ex-
pected to start in the vicinity of y=1+(1—4a)/2, the
point where a typical toppling event (in which the aver-
age u of the kicked sites is U /2) just conserves the total
u.

(iv) y =1: Remarkably, this special case displays com-
pletely different behavior from either the complex period-
ic states at ¥y =17 or the periodic states with s=L? at
y=17%, all of which have A <0 and some (or all) large
avalanches. For y =1, the system rapidly settles into a
periodic state with T=1, all s =1 avalanches, and A=0.
These states are truly marginal: the stable state changes
continuously with small changes in initial conditions.

A partial understanding of the above observations can
be obtained from the analysis of a system consisting of
just two sites. Letting x, denote the value of u, immedi-
ately after the nth toppling of u,, we construct the return
map shown in Fig. 9. For y <1 there is an attractive
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FIG. 9. Return map for the two-site SSM. The solid circle
marks the stable fixed point for ¥ <1. For y > 1, the open cir-
cles mark the stable fixed points, in which both sites topple in
the same avalanche. The segment of the thick line lying on the
diagonal, x, ;=x,, is the set of marginal fixed points for y =1.
The axes are marked in units where the threshold U is unity.
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fixed point corresponding to a state where the sites oscil-
late exactly out of phase and every avalanche has s=1.
For ¥ > 1 this fixed point is unstable, but a different stable
fixed point exists corresponding to a synchronous state in
which both sites topple in the same avalanche. y=1 is
unique is that there is no preferred phase relation for the
two sites, but rather a continuous range of marginally
stable ones. Thus for the two-site system the differences
between the regimes ¥ <1, =1, and > 1 mirror the ob-
served differences in the extended system. It is also
worth noting that a similar analysis of the FFM reveals
no analog of the synchronous fixed point for y > 1, so
that even the two-site system is chaotic.

A full generalization of this analysis, including a com-
plete characterization of the periodic states, is beyond the
scope of this work. Some simple arguments can be made,
however, regarding the crucial feature of whether or not
the periodic states of the extended system have A=0. We
show analytically in the Appendix that the periodic states
reached for Y51 are insensitive to small perturbations:
the states are not marginal. The numerics confirm this
analysis and, in fact, show that A is strictly negative.

Since all the stable states are either strictly periodic
(with A <0) or have manifestly noncritical avalanche dis-
tributions, there is no SOC in the SSM with periodic
boundary conditions.

VI. REMARKS ON OPEN BOUNDARY CONDITIONS

We have seen that with periodic boundary conditions
neither the FFM nor the SSM exhibits SOC for any ¥, in-
cluding the value y =1 with which the models were origi-
nally defined. At this special value, however, both mod-
els exhibit unique properties connected with the vanish-
ing of the maximum Lyapunov exponent.

One is naturally led to ask whether the numerical evi-
dence [in P (s) data [8]] for SOC at ¥ =1 in the SSM with
open boundary conditions is likewise a unique feature or
whether it survives for some range of y. It is difficult to
answer this question purely on the basis of numerics, par-
ticularly numerics for the avalanche size distribution
alone. For y=0.90, Fig. 10(a) shows P (s) cutting off at a
value s * ~ 10, which is independent of L; there is no scale
invariance. For y=0.95, however, P(s) has a small tail
which moves out to larger s values with increasing L
[Fig. 10(b)], possibly indicative of scale-invariant
behavior. It is hard to decide whether these data imply a
divergence of the correlation length for ¥ somewhere be-
tween 0.90 and 0.95, and hence generic SOC, or a correla-
tion length at 0.95 that is comparable to the largest sam-
ple sizes but finite, diverging only at ¥y =1. (Recall that in
the FFM correlation lengths even in the strongly chaotic
region near y =2 were 50 or more, with characteristic
avalanche sizes of 350.) Data for y slightly greater than
1 are similarly ambiguous; P (s) certainly looks algebraic
at y =1.02, for example, as shown in Fig. 10(c).

Susceptibility and Lyapunov exponent data shed some
light on this conundrum. At both y=1.02 and 1.00, x
appears to grow like L? out to L =128, i.e., over the en-
tire range of L for which algebraic behavior of P(s) has
been observed. Correspondingly, M (¢) shows oscillations
(Fig. 11) which do not decrease appreciably with L. Thus
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for y equal to or slightly greater than 1, the power-law
decays of P(s) are associated with apparently chaotic os-
cillations in the mean, i.e., with a breaking of time-
translation invariance and the presumed concomitant
Goldstone mode. At ¥y =1.02 with open boundary condi-
tions we also find A to be positive, as in the FFM for
v > 1, while at y =1.00 A is indistinguishable from zero.
These results admit two obvious possibilities for
behavior consistent with scale-invariant decay of P(s) in
the large-L limit: (1) The symmetry-breaking oscillations
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FIG. 10. Avalanche size distributions for the SSM with open
boundary conditions and a=0.2. Data correspond to a single
state and include approximately 4 X 10® avalanches in each case.
Note the differences in the horizontal scales. (a) ¥ =0.90; note
the lack of change in the distribution with increasing L and the
similarity with the periodic boundary condition case [Fig. 8(a)].
(b) y=0.95; again note the similarity with Fig. 8(a). (c)
vy =1.02; these data look scale invariant, differing markedly
from Fig. 8(b).
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in the mean persist, perhaps becoming truly periodic at
large L; whether one calls this SOC or not is, as discussed
earlier, a matter of definition. (2) The oscillations disap-
pear but the algebraic P (s) survives; this would be “con-
ventional” SOC providing it occurs over a range of ¥ and
not just at ¥y =1, where A apparently vanishes. Of course
the scale invariance in P (s) could simply fail to survive at
large L, a failure that might be accompanied either by the
disappearance of the oscillations or by their persistence
(recall the FFM for 1<y <y*). Clearly it is difficult to
identify the correct scenario without more data. Our
goal here is merely to point out that even for the special
point y =1 there does not yet exist any numerical evi-
dence for scale invariance of P(s) in the absence of mac-
roscopic temporal oscillations. Scale invariance without
symmetry breaking for a nonzero range of y is still more
problematic.

For y <1, where there is no evidence of macroscopic
oscillations, y values are two orders of magnitude lower
at ¥ =0.95 than at y =1.02, consistent with the weakness
of the tail in P(s). We cannot, however, rule out the pos-
sibility that x increases indefinitely with L. More
significant, perhaps, is that preliminary measurements
show A to be negative. This suggests that the stable
states of the system may in fact be strictly periodic, and
that one is observing either long transients or states with
extremely long periods. (Of course the same possibility
exists even for ¥ > 1, but there the possibility of trajectory
spreading in the kicking rule makes chaotic states seem
more likely.) Strictly periodic behavior would be similar
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FIG. 11. Mean variable value M (¢) as a function of time ¢ for
the SSM with L =32 and open boundary conditions: (a) y=1;
(b) y=1.02.
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to what we observed with periodic boundary conditions
for 1—a <y <1. Indeed, a hint of the tail in the P(s)
data for ¥ =0.95 and open boundaries can be found in
the SSM with periodic boundary conditions: If one aver-
aged P(s) over many different stable states one obtains
(Fig. 8) a rather similar tail. Given the marked effect of
boundary conditions on the behavior of the SSM for
¥ =1, we hesitate to infer that only periodic states
without scale invariance occur for ¥ <1 and open boun-
daries. It is worth mentioning, however, that for very
small systems (L <6, say), periodic states do occur at
¥=0.95 with open boundaries, after long transients.
Though transients that persist for sufficiently long times
can be as relevant as asymptotic behavior, complete un-
derstanding requires the correct identification of tran-
sient and asymptotic phenomena.

Finally, it is interesting to speculate about the origin of
the powerful effect of boundary conditions on systems
like the SSM. Naively one might expect that, unlike in
conserving systems in which transport of the conserved
quantity to a boundary can be necessary to maintain a
steady state [5,22], noncritical nonconserving systems
should be relatively insensitive to boundaries. We conjec-
ture that the tendency of the SSM towards periodic
behavior is responsible for the observed sensitivity. We
have seen that with periodic boundary conditions this
model readily finds regular periodic states in which all
sites cycle at the same frequency. With open boundaries,
where the boundary sites have fewer neighbors and so are
kicked less often, different sites must cycle at different
frequencies. While the system might interpolate
somehow between surface and bulk sites in a finite bound-
ary layer, it is possible that the boundary acts as a per-
manent source of perturbations which disrupt the order
arbitrarily far away. The present work provides an ap-
propriate context for further study of this issue.

Note added in proof. Since the submission of this pa-
per, we have become aware of a forest-fire model with two
sets of infinitely separated time scales that has been ar-
gued to exhibit SOC without a conservation law. See C.
L. Menley (unpublished); and B. Drossel and F. Schwabl,
Phys. Rev. Lett. 69, 1629 (1992).
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APPENDIX: STABILITY
OF PERIODIC STATES OF THE SSM

For any given toppling order in a periodic state, we
show that there is a unique solution for the values of u;.
Consider first a state with 7=1 and only s =1 avalanches
and let z be the number of nearest neighbors of each site.
(For the square lattice z=4.) The time evolution of site i
is conveniently specified by z +2 quantities: ¢;, the time
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during the cycle at which site i topples; and /%' with
k=1,...,z+1, where t,-m is the time interval between
the toppling of site i and the first kick it receives from a
neighbor, ¢{? is the interval between the first kick and the
second, etc., and ¢} *1 s the interval between the last kick
from a neighbor and the next toppling of site i. We take
the ramping speed due to continuous driving to be U, so
the increase in u during time ¢ is Uz. We may also define
¢; =0 for one particular site without loss of generality.
The T=1 periodic state with all s =1 is thus specified by
(z+2)N —1 variables, where N is the total number of
sites. These must satisfy the following independent linear
equations.

The total time for each site’s oscillation must be the
same:

z+1 z+1
E ti(k)= 2 tj{k) (A1)
k=1 k=1
for all i and j. These are NV — 1 independent equations.
Each site must reach u; = U at the end of ¢7 T
ik 0y ok
> v’ LY +a Y yr=1.
k=1 k=0

(A2)

These are N independent equations.

The time between the toppling of u; and its next kick
from a particular neighbor #; must equal the time be-
tween the toppling of u; and its previous kick from the
toppling of u;:

x 5
SiH=3 4, (A3)
k=1 k=y

where x and y are determined by the toppling order of
the particular state in question. There is one such equa-
tion for each nearest-neighbor bond, for a total of Nz /2
independent equations.

The relative phases of two neighboring sites must be
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consistent with the time intervals:
< ;(k
bi—¢,=3 /", (A4)
k=1

where ¢, is taken to be the larger of the two phases and x
corresponds to the toppling of site i. These are Nz /2 in-
dependent equations.

Since we have the same number of independent linear
equations as unknowns, there is only one solution. This
implies that the states under consideration are stable
against small perturbations.

This reasoning can be extended in a straightforward
way to T'=1 periodic states that include avalanches with
s > 1. For those sites that are kicked over threshold in an
avalanche, one simply replaces the variable ¢;, which is
now fixed at the phase of the site initiating the avalanche,
by the variable r; that measures the height to which it is
kicked. In addition, for each such kick t,-“)=tjf5)=o,
where i indicates the kicking site and j the kicked site.
Equation (A2) must be modified to account for the fact
that r;7<1, but remains linear. The appropriate book-
keeping then reveals that the number of variables and the
number of equations match, as before. The numerical re-
sults indicate that appropriate generalization to periodic
states with 7 > 1 would yield the same result.

The above argument breaks down for y=1. In this
case, Egs. (A1) and (A2) become redundant, leaving the
system underdetermined. The system has a zero
Lyapunov exponent for each undetermined degree of
freedom. Thus y =1 is seen to be a unique critical point
in the sense that A(1;L)=0 for T=1 periodic states.
Though for y=1 one can construct states with large
avalanches quite easily, it can be shown that they only
arise for fine-tuned initial configurations in which some
neighboring sites differ by exactly a, so in practice one
sees only the simplest periodic states with s=1 for all
avalanches.
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